Transcutaneous vagus nerve stimulation: A treatment option in drug resistant epilepsy?

Andrea Fischenich¹ & Jens Ellrich¹,²

¹ Cerbomed GmbH, Erlangen, Germany
² Dept. of Health Science & Technology Aalborg University, Denmark
Vagus Nerve Stimulation

Adverse effects:
- Voice alteration (37-66%)
- Cough (7-45%)
- Pain (17-28%)
- Dyspnea (6-25%)
- Headache (2-24%)

Randomized controlled trials:
 Neurology 45: 224-230, 1995
 Neurology 51: 48-55, 1998

www.vnstherapy.com
Nucleus of the solitary tract

- is a major sensory nucleus in the dorsal medulla.
- receives cardiovascular, visceral, respiratory, gustatory, and orotactile information.
Auricular Branch of Vagus Nerve, ABVN

- 14 ears of 7 cadavers
- Each branch defined by identifying its origin

Nerve supply of the external ear: Neurosurgery
Isolated vagus nerve palsy with herpes zoster

- Painful herpetic vesicles in right concha and posterior wall of external auditory meatus.
- No affection of other cranial nerves.
Transcutaneous stimulation of ABVN (t-VNS®)

- Transcutaneously applied.
- Excites ABVN by a novel electrode placed on outer ear surface.
- Approved safety and feasibility in more than 100 patients and volunteers.
Excitation of $A\beta$ fibers by t-VNS

- Mechanical detection threshold: $0.5 \pm 0.7 \text{ mN (n=14)}$
- Electrical detection threshold: $0.8 \pm 0.3 \text{ mA (n=36)}$
- Tingling sensation

Stanfield & Germann, Principles of Human Physiology, 2008
t-VNS: A treatment option in epilepsy?

- EEG recording of pharmacologically-induced seizures in rats.
- Both invasive and transcutaneous VNS substantially reduced seizure activity as compared to control.
- No significant differences between seizure reduction through invasive and transcutaneous VNS.

He et al., Society for Neuroscience Abstracts, 39th Annual Meeting, 539.4

- Pilot study in drug resistant epilepsy.
- Seven patients completed nine month treatment with t-VNS.
- Five responders showed reduction of seizure frequency between 23 and 48%.

Stefan et al., unpublished data
Summary & Conclusion

- The concha of the external ear is supplied by the vagus nerve.
- t-VNS is feasible and safe.
- Invasive VNS and transcutaneous VNS similarly suppress epileptic seizures in rodents.
- t-VNS reduces seizure frequency in patients suffering from drug resistant epilepsy by approx. 23 to 48%.
- Future indications of t-VNS® may be chronic pain, mild cognitive impairment and tinnitus.